Learn R Programming

mlr (version 2.19.1)

plotROCCurves: Plots a ROC curve using ggplot2.

Description

Plots a ROC curve from predictions.

Usage

plotROCCurves(
  obj,
  measures,
  diagonal = TRUE,
  pretty.names = TRUE,
  facet.learner = FALSE
)

Value

ggplot2 plot object.

Arguments

obj

(ThreshVsPerfData)
Result of generateThreshVsPerfData.

measures

([list(2)` of Measure)
Default is the first 2 measures passed to generateThreshVsPerfData.

diagonal

(logical(1))
Whether to plot a dashed diagonal line. Default is TRUE.

pretty.names

(logical(1))
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

facet.learner

(logical(1))
Weather to use facetting or different colors to compare multiple learners. Default is FALSE.

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotLearningCurve(), plotPartialDependence(), plotResiduals(), plotThreshVsPerf()

Other thresh_vs_perf: generateThreshVsPerfData(), plotThreshVsPerf()

Examples

Run this code
# \donttest{
lrn = makeLearner("classif.rpart", predict.type = "prob")
fit = train(lrn, sonar.task)
pred = predict(fit, task = sonar.task)
roc = generateThreshVsPerfData(pred, list(fpr, tpr))
plotROCCurves(roc)

r = bootstrapB632plus(lrn, sonar.task, iters = 3)
roc_r = generateThreshVsPerfData(r, list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_r)

r2 = crossval(lrn, sonar.task, iters = 3)
roc_l = generateThreshVsPerfData(list(boot = r, cv = r2), list(fpr, tpr), aggregate = FALSE)
plotROCCurves(roc_l)
# }

Run the code above in your browser using DataLab