Learn R Programming

mlr (version 2.19.1)

setHyperPars: Set the hyperparameters of a learner object.

Description

Set the hyperparameters of a learner object.

Usage

setHyperPars(learner, ..., par.vals = list())

Value

Learner.

Arguments

learner

(Learner | character(1))
The learner. If you pass a string the learner will be created via makeLearner.

...

(any)
Optional named (hyper)parameters. If you want to set specific hyperparameters for a learner during model creation, these should go here. You can get a list of available hyperparameters using getParamSet(<learner>). Alternatively hyperparameters can be given using the par.vals argument but ... should be preferred!

par.vals

(list)
Optional list of named (hyper)parameters. The arguments in ... take precedence over values in this list. We strongly encourage you to use ... for passing hyperparameters.

See Also

Other learner: LearnerProperties, getClassWeightParam(), getHyperPars(), getLearnerId(), getLearnerNote(), getLearnerPackages(), getLearnerParVals(), getLearnerParamSet(), getLearnerPredictType(), getLearnerShortName(), getLearnerType(), getParamSet(), helpLearnerParam(), helpLearner(), makeLearners(), makeLearner(), removeHyperPars(), setId(), setLearnerId(), setPredictThreshold(), setPredictType()

Examples

Run this code
cl1 = makeLearner("classif.ksvm", sigma = 1)
cl2 = setHyperPars(cl1, sigma = 10, par.vals = list(C = 2))
print(cl1)
# note the now set and altered hyperparameters:
print(cl2)

Run the code above in your browser using DataLab