Learn R Programming

mlr3 (version 0.1.6)

mlr_measures_classif.bacc: Balanced Accuracy

Description

Computes the weighted balanced accuracy, suitable for imbalanced data sets. It is defined analogously to the definition in sklearn.

First, the sample weights \(w\) are normalized per class: $$ \hat{w}_i = \frac{w_i}{\sum_j 1(y_j = y_i) w_i}. $$ The balanced accuracy is calculated as $$ \frac{1}{\sum_i \hat{w}_i} \sum_i 1(r_i = t_i) \hat{w}_i. $$

Arguments

Format

R6::R6Class() inheriting from Measure.

Construction

This measures can be retrieved from the dictionary mlr_measures:

mlr_measures$get("classif.bacc")
msr("classif.bacc")

Meta Information

  • Type: "classif"

  • Range: \([0, 1]\)

  • Minimize: FALSE

  • Required prediction: response

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fnr, mlr_measures_classif.fn, mlr_measures_classif.fomr, mlr_measures_classif.fpr, mlr_measures_classif.fp, mlr_measures_classif.logloss, mlr_measures_classif.mcc, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tnr, mlr_measures_classif.tn, mlr_measures_classif.tpr, mlr_measures_classif.tp

Other multiclass classification measures: mlr_measures_classif.acc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.logloss