Learn R Programming

mlr3 (version 0.10.0)

as_result_data: Manually construct an object of type ResultData

Description

This function allows to manually construct a ResampleResult or BenchmarkResult by combining the individual components to an object of class ResultData, mlr3's internal container object. A ResampleResult or BenchmarkResult can then be initialized with the returned object. Note that ResampleResults can be converted to a BenchmarkResult with as_benchmark_result() and multiple BenchmarkResults can be combined to a larger BenchmarkResult.

Usage

as_result_data(
  task,
  learners,
  resampling,
  iterations,
  predictions,
  learner_states = NULL,
  store_backends = TRUE
)

Arguments

task

(Task).

learners

(list of trained Learners).

resampling
iterations

(integer()).

predictions

(list of Predictions).

learner_states

(list()) Learner states. If not provided, the states of learners are automatically extracted.

store_backends

(logical(1)) If set to FALSE, the backends of the Tasks provided in data are removed.

Value

ResultData object which can be passed to the constructor of ResampleResult.

Examples

Run this code
# NOT RUN {
task = tsk("iris")
learner = lrn("classif.rpart")
resampling = rsmp("cv", folds = 2)$instantiate(task)
iterations = seq_len(resampling$iters)

# manually train two learners.
# store learners and predictions
learners = list()
predictions = list()
for (i in iterations) {
  l = learner$clone(deep = TRUE)
  learners[[i]] = l$train(task, row_ids = resampling$train_set(i))
  predictions[[i]] = l$predict(task, row_ids = resampling$test_set(i))
}

rdata = as_result_data(task, learners, resampling, iterations, predictions)
ResampleResult$new(rdata)
# }

Run the code above in your browser using DataLab