Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality.
Book on mlr3: https://mlr3book.mlr-org.com
Use cases and examples gallery: https://mlr3gallery.mlr-org.com
Cheat Sheets: https://cheatsheets.mlr-org.com
Preprocessing and machine learning pipelines: mlr3pipelines
Analysis of benchmark experiments: mlr3benchmark
More classification and regression tasks: mlr3data
Connector to OpenML: mlr3oml
Solid selection of good classification and regression learners: mlr3learners
Even more learners: https://github.com/mlr-org/mlr3extralearners
Tuning of hyperparameters: mlr3tuning
Hyperband tuner: mlr3hyperband
Visualizations for many mlr3 objects: mlr3viz
Survival analysis and probabilistic regression: mlr3proba
Cluster analysis: mlr3cluster
Feature selection filters: mlr3filters
Feature selection wrappers: mlr3fselect
Interface to real (out-of-memory) data bases: mlr3db
Performance measures as plain functions: mlr3measures
Parallelization framework: future
Progress bars: progressr
Encapsulated evaluation: evaluate, callr (external process)
Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L, Bischl B (2019). “mlr3: A modern object-oriented machine learning framework in R.” Journal of Open Source Software. 10.21105/joss.01903, https://joss.theoj.org/papers/10.21105/joss.01903.
Useful links: