Parameter xval
is set to 0 in order to save some computation time.
Parameter model
has been renamed to keep_model
.
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
mlr_learners$get("regr.rpart") lrn("regr.rpart")
Task type: “regr”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “factor”, “ordered”
Required Packages: rpart
Id | Type | Default | Range | Levels |
minsplit | integer | 20 | \([1, \infty)\) | - |
minbucket | integer | - | \([1, \infty)\) | - |
cp | numeric | 0.01 | \([0, 1]\) | - |
maxcompete | integer | 4 | \([0, \infty)\) | - |
maxsurrogate | integer | 5 | \([0, \infty)\) | - |
maxdepth | integer | 30 | \([1, 30]\) | - |
usesurrogate | integer | 2 | \([0, 2]\) | - |
surrogatestyle | integer | 0 | \([0, 1]\) | - |
xval | integer | 10 | \([0, \infty)\) | - |
keep_model | logical | FALSE | \((-\infty, \infty)\) | TRUE, FALSE |
mlr3::Learner
-> mlr3::LearnerRegr
-> LearnerRegrRpart
new()
Creates a new instance of this R6 class.
LearnerRegrRpart$new()
importance()
The importance scores are extracted from the model slot variable.importance
.
LearnerRegrRpart$importance()
Named numeric()
.
selected_features()
Selected features are extracted from the model slot frame$var
.
LearnerRegrRpart$selected_features()
character()
.
clone()
The objects of this class are cloneable with this method.
LearnerRegrRpart$clone(deep = FALSE)
deep
Whether to make a deep clone.
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. 10.1201/9781315139470.
Dictionary of Learners: mlr_learners
as.data.table(mlr_learners)
for a complete table of all (also dynamically created) Learner implementations.
Other Learner:
LearnerClassif
,
LearnerRegr
,
Learner
,
mlr_learners_classif.debug
,
mlr_learners_classif.featureless
,
mlr_learners_classif.rpart
,
mlr_learners_regr.featureless
,
mlr_learners