Learn R Programming

mlr3 (version 0.14.1)

mlr_learners_classif.debug: Classification Learner for Debugging

Description

A simple LearnerClassif used primarily in the unit tests and for debugging purposes. If no hyperparameter is set, it simply constantly predicts a randomly selected label. The following hyperparameters trigger the following actions:

error_predict:

Probability to raise an exception during predict.

error_train:

Probability to raises an exception during train.

message_predict:

Probability to output a message during predict.

message_train:

Probability to output a message during train.

predict_missing:

Ratio of predictions which will be NA.

predict_missing_type:

To to encode missingness. “na” will insert NA values, “omit” will just return fewer predictions than requested.

save_tasks:

Saves input task in model slot during training and prediction.

segfault_predict:

Probability to provokes a segfault during predict.

segfault_train:

Probability to provokes a segfault during train.

sleep_train:

Function returning a single number determining how many seconds to sleep during $train().

sleep_predict:

Function returning a single number determining how many seconds to sleep during $predict().

threads:

Number of threads to use. Has no effect.

warning_predict:

Probability to signal a warning during predict.

warning_train:

Probability to signal a warning during train.

x:

Numeric tuning parameter. Has no effect.

Note that segfaults may not be triggered reliably on your operating system. Also note that if they work as intended, they will tear down your R session immediately!

Arguments

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("classif.debug")
lrn("classif.debug")

Meta Information

  • Task type: “classif”

  • Predict Types: “response”, “prob”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3

Parameters

IdTypeDefaultLevelsRange
error_predictnumeric0\([0, 1]\)
error_trainnumeric0\([0, 1]\)
message_predictnumeric0\([0, 1]\)
message_trainnumeric0\([0, 1]\)
predict_missingnumeric0\([0, 1]\)
predict_missing_typecharacternana, omit-
save_taskslogicalFALSETRUE, FALSE-
segfault_predictnumeric0\([0, 1]\)
segfault_trainnumeric0\([0, 1]\)
sleep_trainuntyped--
sleep_predictuntyped--
threadsinteger-\([1, \infty)\)
warning_predictnumeric0\([0, 1]\)
warning_trainnumeric0\([0, 1]\)
xnumeric-\([0, 1]\)
iterinteger1\([1, \infty)\)

Super classes

mlr3::Learner -> mlr3::LearnerClassif -> LearnerClassifDebug

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

LearnerClassifDebug$new()


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerClassifDebug$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

See Also

Other Learner: LearnerClassif, LearnerRegr, Learner, mlr_learners_classif.featureless, mlr_learners_classif.rpart, mlr_learners_regr.debug, mlr_learners_regr.featureless, mlr_learners_regr.rpart, mlr_learners

Examples

Run this code
learner = lrn("classif.debug")
learner$param_set$values = list(message_train = 1, save_tasks = TRUE)

# this should signal a message
task = tsk("penguins")
learner$train(task)
learner$predict(task)

# task_train and task_predict are the input tasks for train() and predict()
names(learner$model)

Run the code above in your browser using DataLab