Measure to compare true observed labels with predicted probabilities in binary classification tasks.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.prauc")
msr("classif.prauc")
Empty ParamSet
Type: "binary"
Range: \([0, 1]\)
Minimize: FALSE
Required prediction: prob
Computes the area under the Precision-Recall curve (PRC). The PRC can be interpreted as the relationship between precision and recall (sensitivity), and is considered to be a more appropriate measure for unbalanced datasets than the ROC curve. The PRC is computed by integration of the piecewise function.
This measure is undefined if the true values are either all positive or all negative.
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures:
mlr_measures_classif.acc
,
mlr_measures_classif.auc
,
mlr_measures_classif.bacc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.ce
,
mlr_measures_classif.costs
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.logloss
,
mlr_measures_classif.mauc_au1p
,
mlr_measures_classif.mauc_au1u
,
mlr_measures_classif.mauc_aunp
,
mlr_measures_classif.mauc_aunu
,
mlr_measures_classif.mbrier
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp
Other binary classification measures:
mlr_measures_classif.auc
,
mlr_measures_classif.bbrier
,
mlr_measures_classif.dor
,
mlr_measures_classif.fbeta
,
mlr_measures_classif.fdr
,
mlr_measures_classif.fnr
,
mlr_measures_classif.fn
,
mlr_measures_classif.fomr
,
mlr_measures_classif.fpr
,
mlr_measures_classif.fp
,
mlr_measures_classif.mcc
,
mlr_measures_classif.npv
,
mlr_measures_classif.ppv
,
mlr_measures_classif.precision
,
mlr_measures_classif.recall
,
mlr_measures_classif.sensitivity
,
mlr_measures_classif.specificity
,
mlr_measures_classif.tnr
,
mlr_measures_classif.tn
,
mlr_measures_classif.tpr
,
mlr_measures_classif.tp