Convert object to a TaskClassif. This is a S3 generic. mlr3 ships with methods for the following objects:
TaskClassif: returns the object as-is, possibly cloned.
formula
, data.frame()
, matrix()
, Matrix::Matrix()
and DataBackend: provides an alternative to the constructor of TaskClassif.
TaskRegr: Calls convert_task()
.
Note that the target column will be converted to a factor()
, if possible.
as_task_classif(x, ...)# S3 method for TaskClassif
as_task_classif(x, clone = FALSE, ...)
# S3 method for data.frame
as_task_classif(
x,
target = NULL,
id = deparse1(substitute(x)),
positive = NULL,
label = NA_character_,
...
)
# S3 method for matrix
as_task_classif(
x,
target,
id = deparse1(substitute(x)),
label = NA_character_,
...
)
# S3 method for Matrix
as_task_classif(
x,
target,
id = deparse1(substitute(x)),
label = NA_character_,
...
)
# S3 method for DataBackend
as_task_classif(
x,
target = NULL,
id = deparse1(substitute(x)),
positive = NULL,
label = NA_character_,
...
)
# S3 method for TaskRegr
as_task_classif(
x,
target = NULL,
drop_original_target = FALSE,
drop_levels = TRUE,
...
)
# S3 method for formula
as_task_classif(
x,
data,
id = deparse1(substitute(data)),
positive = NULL,
label = NA_character_,
...
)
TaskClassif.
(any)
Object to convert.
(any)
Additional arguments.
(logical(1)
)
If TRUE
, ensures that the returned object is not the same as the input x
.
(character(1)
)
Name of the target column.
(character(1)
)
Id for the new task.
Defaults to the (deparsed and substituted) name of the data argument.
(character(1)
)
Level of the positive class. See TaskClassif.
(character(1)
)
Label for the new instance.
(logical(1)
)
If FALSE
(default), the original target is added as a feature.
Otherwise the original target is dropped.
(logical(1)
)
If TRUE
(default), unused levels of the new target variable are dropped.
(data.frame()
)
Data frame containing all columns referenced in formula x
.
as_task_classif(palmerpenguins::penguins, target = "species")
Run the code above in your browser using DataLab