Learn R Programming

mlr3 (version 0.23.0)

mlr_measures_classif.logloss: Log Loss

Description

Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.

Arguments

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("classif.logloss")
msr("classif.logloss")

Parameters

Empty ParamSet

Meta Information

  • Type: "classif"

  • Range: \([0, \infty)\)

  • Minimize: TRUE

  • Required prediction: prob

Details

The Log Loss (a.k.a Benoulli Loss, Logistic Loss, Cross-Entropy Loss) is defined as $$ -\frac{1}{n} \sum_{i=1}^n w_i \log \left( p_i \right ) $$ where \(p_i\) is the probability for the true class of observation \(i\) and \(w_i\) are normalized weights for each observation \(x_i\).

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other classification measures: mlr_measures_classif.acc, mlr_measures_classif.auc, mlr_measures_classif.bacc, mlr_measures_classif.bbrier, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.dor, mlr_measures_classif.fbeta, mlr_measures_classif.fdr, mlr_measures_classif.fn, mlr_measures_classif.fnr, mlr_measures_classif.fomr, mlr_measures_classif.fp, mlr_measures_classif.fpr, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mauc_mu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc, mlr_measures_classif.npv, mlr_measures_classif.ppv, mlr_measures_classif.prauc, mlr_measures_classif.precision, mlr_measures_classif.recall, mlr_measures_classif.sensitivity, mlr_measures_classif.specificity, mlr_measures_classif.tn, mlr_measures_classif.tnr, mlr_measures_classif.tp, mlr_measures_classif.tpr

Other multiclass classification measures: mlr_measures_classif.acc, mlr_measures_classif.bacc, mlr_measures_classif.ce, mlr_measures_classif.costs, mlr_measures_classif.mauc_au1p, mlr_measures_classif.mauc_au1u, mlr_measures_classif.mauc_aunp, mlr_measures_classif.mauc_aunu, mlr_measures_classif.mauc_mu, mlr_measures_classif.mbrier, mlr_measures_classif.mcc