Learn R Programming

mlr3 (version 0.23.0)

mlr_measures_regr.rrse: Root Relative Squared Error

Description

Measure to compare true observed response with predicted response in regression tasks.

Arguments

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.rrse")
msr("regr.rrse")

Parameters

Empty ParamSet

Meta Information

  • Type: "regr"

  • Range: \([0, \infty)\)

  • Minimize: TRUE

  • Required prediction: response

Details

The Root Relative Squared Error is defined as $$ \sqrt{\frac{\sum_{i=1}^n \left( t_i - r_i \right)^2}{\sum_{i=1}^n \left( t_i - \bar{t} \right)^2}}, $$ where \(\bar{t} = \sum_{i=1}^n t_i\).

Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.

This measure is undefined for constant \(t\).

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae, mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse, mlr_measures_regr.mse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.pinball, mlr_measures_regr.rae, mlr_measures_regr.rmse, mlr_measures_regr.rmsle, mlr_measures_regr.rse, mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse