50% off: Unlimited data and AI learning.
The Learning Leader's Guide to AI Literacy

mlr3 (version 0.23.0)

mlr_measures_regr.rse: Relative Squared Error

Description

Measure to compare true observed response with predicted response in regression tasks.

Arguments

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.rse")
msr("regr.rse")

Parameters

Empty ParamSet

Meta Information

  • Type: "regr"

  • Range: [0,)

  • Minimize: TRUE

  • Required prediction: response

Details

The Relative Squared Error is defined as i=1n(tiri)2i=1n(tit¯)2, where t¯=i=1nti.

Can be interpreted as squared error of the predictions relative to a naive model predicting the mean.

This measure is undefined for constant t.

See Also

Dictionary of Measures: mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae, mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse, mlr_measures_regr.mse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.pinball, mlr_measures_regr.rae, mlr_measures_regr.rmse, mlr_measures_regr.rmsle, mlr_measures_regr.rrse, mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse