Regression measure defined as $$ \frac{1}{n} \sum_{i=1}^n \left( t_i - r_i \right). $$ Good predictions score close to 0.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("bias") msr("bias")
Type: "regr"
Range: \((-\infty, \infty)\)
Minimize: NA
Required prediction: response
Dictionary of Measures: mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other regression measures:
mlr_measures_regr.ktau
,
mlr_measures_regr.mae
,
mlr_measures_regr.mape
,
mlr_measures_regr.maxae
,
mlr_measures_regr.medae
,
mlr_measures_regr.medse
,
mlr_measures_regr.mse
,
mlr_measures_regr.msle
,
mlr_measures_regr.pbias
,
mlr_measures_regr.rae
,
mlr_measures_regr.rmse
,
mlr_measures_regr.rmsle
,
mlr_measures_regr.rrse
,
mlr_measures_regr.rse
,
mlr_measures_regr.rsq
,
mlr_measures_regr.sae
,
mlr_measures_regr.smape
,
mlr_measures_regr.srho
,
mlr_measures_regr.sse