powered by
Measure to compare true observed response with predicted response in regression tasks.
rrse(truth, response, na_value = NaN, ...)
Performance value as numeric(1).
numeric(1)
(numeric()) True (observed) values. Must have the same length as response.
numeric()
response
(numeric()) Predicted response values. Must have the same length as truth.
truth
(numeric(1)) Value that should be returned if the measure is not defined for the input (as described in the note). Default is NaN.
NaN
(any) Additional arguments. Currently ignored.
any
Type: "regr"
"regr"
Range: \([0, \infty)\)
Minimize: TRUE
TRUE
Required prediction: response
The Root Relative Squared Error is defined as $$ \sqrt{\frac{\sum_{i=1}^n \left( t_i - r_i \right)^2}{\sum_{i=1}^n \left( t_i - \bar{t} \right)^2}}, $$ where \(\bar{t} = \sum_{i=1}^n t_i\).
Can be interpreted as root of the squared error of the predictions relative to a naive model predicting the mean.
This measure is undefined for constant \(t\).
Other Regression Measures: ae(), ape(), bias(), ktau(), linex(), mae(), mape(), maxae(), maxse(), medae(), medse(), mse(), msle(), pbias(), pinball(), rae(), rmse(), rmsle(), rse(), rsq(), sae(), se(), sle(), smape(), srho(), sse()
ae()
ape()
bias()
ktau()
linex()
mae()
mape()
maxae()
maxse()
medae()
medse()
mse()
msle()
pbias()
pinball()
rae()
rmse()
rmsle()
rse()
rsq()
sae()
se()
sle()
smape()
srho()
sse()
set.seed(1) truth = 1:10 response = truth + rnorm(10) rrse(truth, response)
Run the code above in your browser using DataLab