Learn R Programming

mlr3measures (version 1.0.0)

sae: Sum of Absolute Errors

Description

Measure to compare true observed response with predicted response in regression tasks.

Usage

sae(truth, response, ...)

Value

Performance value as numeric(1).

Arguments

truth

(numeric())
True (observed) values. Must have the same length as response.

response

(numeric())
Predicted response values. Must have the same length as truth.

...

(any)
Additional arguments. Currently ignored.

Meta Information

  • Type: "regr"

  • Range: \([0, \infty)\)

  • Minimize: TRUE

  • Required prediction: response

Details

The Sum of Absolute Errors is defined as $$ \sum_{i=1}^n \left| t_i - r_i \right|. $$

See Also

Other Regression Measures: ae(), ape(), bias(), ktau(), linex(), mae(), mape(), maxae(), maxse(), medae(), medse(), mse(), msle(), pbias(), pinball(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), se(), sle(), smape(), srho(), sse()

Examples

Run this code
set.seed(1)
truth = 1:10
response = truth + rnorm(10)
sae(truth, response)

Run the code above in your browser using DataLab