powered by
Measure to compare true observed response with predicted response in regression tasks.
sae(truth, response, ...)
Performance value as numeric(1).
numeric(1)
(numeric()) True (observed) values. Must have the same length as response.
numeric()
response
(numeric()) Predicted response values. Must have the same length as truth.
truth
(any) Additional arguments. Currently ignored.
any
Type: "regr"
"regr"
Range: \([0, \infty)\)
Minimize: TRUE
TRUE
Required prediction: response
The Sum of Absolute Errors is defined as $$ \sum_{i=1}^n \left| t_i - r_i \right|. $$
Other Regression Measures: ae(), ape(), bias(), ktau(), linex(), mae(), mape(), maxae(), maxse(), medae(), medse(), mse(), msle(), pbias(), pinball(), rae(), rmse(), rmsle(), rrse(), rse(), rsq(), se(), sle(), smape(), srho(), sse()
ae()
ape()
bias()
ktau()
linex()
mae()
mape()
maxae()
maxse()
medae()
medse()
mse()
msle()
pbias()
pinball()
rae()
rmse()
rmsle()
rrse()
rse()
rsq()
se()
sle()
smape()
srho()
sse()
set.seed(1) truth = 1:10 response = truth + rnorm(10) sae(truth, response)
Run the code above in your browser using DataLab