Learn R Programming

mlt (version 1.6-0)

mmlt: Multivariate Conditional Transformation Models

Description

Conditional transformation models for multivariate continuous, discrete, or a mix of continuous and discrete outcomes

Usage

mmlt(..., formula = ~ 1, data, conditional = FALSE, theta = NULL, fixed = NULL,
     scale = FALSE, optim = mltoptim(auglag = list(maxtry = 5)), 
     args = list(seed = 1, M = 1000), dofit = TRUE, domargins = TRUE)
# S3 method for cmmlt
coef(object, newdata, 
     type = c("all", "conditional", "Lambdapar", "Lambda", "Lambdainv", 
              "Precision", "PartialCorr", "Sigma", "Corr", 
              "Spearman", "Kendall"), fixed = TRUE, 
     ...)
# S3 method for mmmlt
coef(object, newdata, 
     type = c("all", "marginal", "Lambdapar", "Lambda", "Lambdainv", 
              "Precision", "PartialCorr", "Sigma", "Corr", 
              "Spearman", "Kendall"), fixed = TRUE,
     ...)
# S3 method for mmlt
predict(object, newdata, margins = 1:J, 
        type = c("trafo", "distribution", "survivor", "density", "hazard"), 
                 log = FALSE, args = object$args, ...)
# S3 method for mmlt
simulate(object, nsim = 1L, seed = NULL, newdata, K = 50, ...)

Value

An object of class mmlt with coef and predict

methods.

Arguments

...

marginal transformation models, one for each response, for mmlt. Additional arguments for the methods.

formula

a model formula describing a model for the dependency structure via the lambda parameters. The default is set to ~ 1 for constant lambdas.

data

a data.frame.

conditional

logical; parameters are defined conditionally (only possible when all models are probit models). This is the default as described by Klein et al. (2022). If FALSE, parameters can be directly interpreted marginally, this is explained in Section 2.6 by Klein et al. (2022). Using conditional = FALSE with probit-only models gives the same likelihood but different parameter estimates.

theta

an optional vector of starting values.

fixed

an optional named numeric vector of predefined parameter values or a logical (for coef) indicating to also return fixed parameters (only when type = "all").

scale

a logical indicating if (internal) scaling shall be applied to the model coefficients.

optim

a list of optimisers as returned by mltoptim

args

a list of arguments for lpmvnorm.

dofit

logical; parameters are fitted by default, otherwise a list with log-likelihood and score function is returned.

domargins

logical; all model parameters are fitted by default, including the parameters of marginal models.

object

an object of class mmlt.

newdata

an optional data.frame coefficients and predictions shall be computed for.

type

type of coefficient or prediction to be returned.

margins

indices defining marginal models to be evaluated. Can be single integers giving the marginal distribution of the corresponding variable, or multiple integers (currently only 1:j implemented).

log

logical; return log-probabilities or log-densities if TRUE.

nsim

number of samples to generate.

seed

optional seed for the random number generator.

K

number of grid points to generate.

Details

The function implements core functionality for fitting multivariate conditional transformation models as described by Klein et al (2020).

References

Nadja Klein, Torsten Hothorn, Luisa Barbanti, Thomas Kneib (2022), Multivariate Conditional Transformation Models. Scandinavian Journal of Statistics, 49, 116--142, tools:::Rd_expr_doi("10.1111/sjos.12501").

Torsten Hothorn (2024), On Nonparanormal Likelihoods. tools:::Rd_expr_doi("10.48550/arXiv.2408.17346").