# NOT RUN {
modelPK <- inlineModel("
[LONGITUDINAL]
input={V,Cl,alpha, beta,b}
EQUATION:
C = pkmodel(V, Cl)
h = alpha*exp(beta*C)
g = b*C
DEFINITION:
y = {distribution=normal, prediction=C, sd=g}
e = {type=event, maxEventNumber=1, rightCensoringTime=30, hazard=h}
[INDIVIDUAL]
input={V_pop,Cl_pop,omega_V,omega_Cl}
DEFINITION:
V = {distribution=lognormal, prediction=V_pop, sd=omega_V}
Cl = {distribution=lognormal, prediction=Cl_pop, sd=omega_Cl}
")
adm <- list(amount=100, time=0)
p <- c(V_pop=10, Cl_pop=1, omega_V=0.2, omega_Cl=0.2, alpha=0.02, beta=0.1, b=0.1)
out.y <- list(name=c('y'), time=seq(0,to=25,by=5))
out.e <- list(name=c('e'), time=0)
out.p <- c("V", "Cl")
out <- list(out.y, out.e, out.p)
g <- list(size=100, level='individual')
res1 <- simulx(model=modelPK, treatment=adm, parameter=p, output=out, group=g)
statmlx(res1$parameter, FUN = "mean", probs = c(0.05, 0.5, 0.95))
statmlx(res1$parameter, FUN = "quantile", probs = c(0.05, 0.5, 0.95))
statmlx(res1$parameter, FUN = c("sd", "quantile"), probs = c(0.05, 0.95))
statmlx(res1$y, FUN = c("mean", "sd", "quantile"), probs = c(0.05, 0.95))
statmlx(res1$e, surv.time=c(10,20))
res2 <- simulx(model=modelPK, treatment=adm, parameter=p, output=out, group=g, nrep=3)
statmlx(res2$parameter, FUN = c("sd", "quantile"), probs = c(0.05, 0.95))
statmlx(res2$y, FUN = c("mean", "sd", "quantile"), probs = c(0.05, 0.95))
statmlx(res2$e, surv.time=c(10,20,30))
# }
Run the code above in your browser using DataLab