Usage
## Continuous distributions
betaMode(shape1, shape2, ncp = 0) # Beta
cauchyMode(location = 0, ...) # Cauchy
chisqMode(df, ncp = 0) # Chisquare
expMode(...) # Exponentiel
fMode(df1, df2) # F
frechetMode(loc = 0, scale = 1, shape = 1, ...) # Fr�chet (package 'evd')
gammaMode(shape, rate = 1, scale = 1/rate) # Gamma
normMode(mean = 0, ...) # Normal (Gaussian)
gevMode(loc = 1, scale = 1, shape = 1, ...) # Generalised Extreme Value (package 'evd')
ghMode(alpha = 1, beta = 0, delta = 1, mu = 0,
lambda = 1, ...) # Generalised Hyperbolic (package 'fBasics')
gpdMode(loc = 0, scale = 1, shape = 0, ...) # Generalised Pareto (package 'evd')
gumbelMode(loc = 0, ...) # Gumbel (package 'evd')
hypMode(alpha = 1, beta = 0, delta = 1, mu = 0,
pm = c(1, 2, 3, 4)) # Hyperbolic (package 'fBasics')
logisMode(location = 0, ...) # Logistic
lnormMode(meanlog = 0, sdlog = 1) # Lognormal
nigMode(alpha = 1, beta = 0, delta = 1,
mu = 0, ...) # Normal Inverse Gaussian (package 'fBasics')
stableMode(alpha, beta, gamma = 1, delta = 0, pm = 0, ...) # Stable (package 'fBasics')
symstbMode(...) # Symmetric stable (package 'fBasics')
rweibullMode(loc = 0, scale = 1, shape = 1, ...) # Negative Weibull (package 'evd')
tMode(df, ncp = 0) # T (Student)
unifMode(min = 0, max = 1) # Uniform
weibullMode(shape, scale = 1, ...) # Weibull
## Discrete distributions
bernMode(prob) # Bernoulli
binomMode(size, prob) # Binomial
geomMode(...) # Geometric
hyperMode(m, n, k, ...) # Hypergeometric
nbinomMode(size, prob, mu) # Negative Binomial
poisMode(lambda) # Poisson
Arguments
shape1, shape2, ncp, location, df, df1, df2, loc, scale, shape,
rate, mean, alpha, beta, delta, mu, lambda, pm, meanlog, sdlog,
gamma, min, max, prob, size, m, n, k
...
further arguments, which will be ignored.