Learn R Programming

modehunt (version 1.0.7)

modeHunting: Multiscale analysis of a density on all possible intervals

Description

Simultanous confidence statements for the existence and location of local increases and decreases of a density f, computed on all intervals spanned by two observations.

Usage

modeHunting(X.raw, lower = -Inf, upper = Inf, crit.vals, min.int = FALSE)

Arguments

X.raw
Vector of observations.
lower
Lower support point of $f$, if known.
upper
Upper support point of $f$, if known.
crit.vals
2-dimensional vector giving the critical values for the desired level.
min.int
If min.int = TRUE, the set of minimal intervals is output, otherwise all intervals with a test statistic above the critical value are given.

Value

  • DpThe set $\mathcal{D}^+(\alpha)$ (or $\bf{D}^+(\alpha)$), based on the test statistic with additive correction $\Gamma$.
  • DmThe set $\mathcal{D}^-(\alpha)$ (or $\bf{D}^-(\alpha)$), based on the test statistic with $\Gamma$.
  • Dp.noaddThe set $\mathcal{D}^+(\alpha)$ (or $\bf{D}^+(\alpha)$), based on the test statistic without $\Gamma$.
  • Dm.noaddThe set $\mathcal{D}^+(\alpha)$ (or $\bf{D}^-(\alpha)$), based on the test statistic without $\Gamma$.

Details

In general, the methods modeHunting, modeHuntingApprox, and modeHuntingBlock compute for a given level $\alpha \in (0, 1)$ and the corresponding critical value $c_{jk}(\alpha)$ two sets of intervals $$\mathcal{D}^\pm(\alpha) = \Bigl{ \mathcal{I}_{jk} \ : \ \pm T_{jk}({\bf{X}} ) > c_{jk}(\alpha) \Bigr}$$ where $\mathcal{I}_{jk}:=(X_{(j)},X_{(k)})$ for $0\le j < k \le n+1, k-j> 1$ and $c_{jk}$ are appropriate critical values. Specifically, the function modeHunting computes $\mathcal{D}^\pm(\alpha)$ based on the two test statistics $$T_n^+({\bf{X}}, \mathcal{I}) = \max_{(j,k) \in \mathcal{I}} \Bigl( |T_{jk}({\bf{X}})| / \sigma_{jk} - \Gamma \Bigl(\frac{k-j}{n+2}\Bigr)\Bigr)$$ and $$T_n({\bf{X}}, \mathcal{I}) = \max_{(j,k) \in \mathcal{I}} ( |T_{jk}({\bf{X}})| / \sigma_{jk} ),$$ using the set $\mathcal{I} := \mathcal{I}_{all}$ of all intervals spanned by two observations $(X_{(j)}, X_{(k)})$: $$\mathcal{I}_{all} = \Bigl{(j, \ k ) \ : \ 0 \le j < k \le n+1, \ k - j > 1\Bigr}.$$ We introduced the local test statistics $$T_{jk}({\bf{X}}) := \sum_{i=j+1}^{k-1} ( 2 X_{(i; j, k)} - 1) 1{X_{(i; j, k)} \in (0,1)},$$ for local order statistics $$X_{(i; j, k)} := \frac{X_{(i)}-X_{(j)}}{X_{(k)} - X_{(j)}},$$ the standard deviation $\sigma_{jk} := \sqrt{(k-j-1)/3}$ and the additive correction term $\Gamma(\delta) := \sqrt{2 \log(e / \delta)}$ for $\delta > 0$. If min.int = TRUE, the set $\mathcal{D}^\pm(\alpha)$ is replaced by the set ${\bf{D}}^\pm(\alpha)$ of its minimal elements. An interval $J \in \mathcal{D}^\pm(\alpha)$ is called minimal if $\mathcal{D}^\pm(\alpha)$ contains no proper subset of $J$. This minimization post-processing step typically massively reduces the number of intervals. If we are mainly interested in locating the ranges of increases and decreases of $f$ as precisely as possible, the intervals in $\mathcal{D}^\pm(\alpha) \setminus \bf{D}^\pm(\alpha)$ do not contain relevant information.

References

Duembgen, L. and Walther, G. (2008). Multiscale Inference about a density. Ann. Statist., 36, 1758--1785. Rufibach, K. and Walther, G. (2010). A general criterion for multiscale inference. J. Comput. Graph. Statist., 19, 175--190.

See Also

modeHuntingApprox, modeHuntingBlock, and cvModeAll.

Examples

Run this code
## for examples type
help("mode hunting")
## and check the examples there}

<keyword>htest</keyword>
<keyword>nonparametric</keyword>

Run the code above in your browser using DataLab