data("NCI60_4arrays")
tumorType <- sapply(strsplit(colnames(NCI60_4arrays$agilent), split="\\."), "[", 1)
colcode <- as.factor(tumorType)
levels(colcode) <- c("red", "green", "blue", "cyan", "orange",
"gray25", "brown", "gray75", "pink")
colcode <- as.character(colcode)
moa <- mbpca(NCI60_4arrays, ncomp = 10, k = "all", method = "globalScore", option = "lambda1",
center=TRUE, scale=FALSE)
plot(moa, value="eig", type=2)
r <- bootMbpca(moa, mc.cores = 1, B=6, replace = FALSE, resample = "sample")
moas <- mbpca(NCI60_4arrays, ncomp = 3, k = 0.1, method = "globalScore", option = "lambda1",
center=TRUE, scale=FALSE)
scr <- moaScore(moa)
scrs <- moaScore(moas)
diag(cor(scr[, 1:3], scrs))
layout(matrix(1:2, 1, 2))
plot(scrs[, 1:2], col=colcode, pch=20)
legend("topright", legend = unique(tumorType), col=unique(colcode), pch=20)
plot(scrs[, 2:3], col=colcode, pch=20)
gap <- moGap(moas, K.max = 12, cluster = "hcl")
gap$nClust
hcl <- hclust(dist(scrs))
cls <- cutree(hcl, k=4)
clsColor <- as.factor(cls)
levels(clsColor) <- c("red", "blue", "orange", "pink")
clsColor <- as.character((clsColor))
heatmap(t(scrs[hcl$order, ]), ColSideColors = colcode[hcl$order], Rowv = NA, Colv=NA)
heatmap(t(scrs[hcl$order, ]), ColSideColors = clsColor[hcl$order], Rowv = NA, Colv=NA)
genes <- moaCoef(moas)
genes$nonZeroCoef$agilent.V1.neg
Run the code above in your browser using DataLab