Learn R Programming

mogsa (version 1.6.4)

moGap: Gap statistic for clustering latent variables in moa-class.

Description

Gap statitistic is a measurement of goodness of clustering result. This is a convenient function to calculate the gap statistic of clustering "moa".

Usage

moGap(x, K.max, B = 100, cluster = c("kmeans", "hclust"), plot = TRUE, dist.method = "euclidean", dist.diag = FALSE, dist.upper = FALSE, dist.p = 2, hcl.method = "complete", hcl.members = NULL, km.iter.max = 10, km.nstart = 10, km.algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), km.trace = FALSE)

Arguments

x
An object of class moa-class returned by mbpca.
K.max
The maximum number of clusters to consider, passed to clusGap
B
The number of bootstrap, passed to clusGap
cluster
A charater string could be either "kmeans" or "hclust" to specify the clustering algorithm.
plot
Logical; whether return the gap statistic plot.
dist.method
Distance meaurement, passed to function "dist".
dist.diag
Passed to function "dist".
dist.upper
Passed to function "dist".
dist.p
Passed to function "dist".
hcl.method
Hierarchical clustering method, passed to "hclust"
hcl.members
Passed to "hclust"
km.iter.max
Maximum number of iteration in kmeans, passed to "kmeans".
km.nstart
An integer to specify how many random sets should be chosen. passed to "kmeans".
km.algorithm
Kmeans algorithm, passed to "kmeans".
km.trace
See function "kmeans".

Value

It returns a list consists of five components:"Tab", "n", "B", "FUNcluster" - see clusGap"nClust" - the estimated number of clusters using different method, see maxSE

References

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the Gap statistic. Journal of the Royal Statistical Society B, 63, 411-423.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.(2015). cluster: Cluster Analysis Basics and Extensions. R package version 2.0.1.

See Also

Function "clusGap" in "cluster" package Function "dist", "hclust", "kmeans"

Examples

Run this code
# see examples in \code{\link{mbpca}}


data("NCI60_4arrays")
moa <- mbpca(NCI60_4arrays, ncomp = 10, k = "all", method = "globalScore", option = "lambda1", 
             center=TRUE, scale=FALSE)
gap <- moGap(moa, K.max = 12, cluster = "hcl")

genes <- moaCoef(moa)
scr <- moaScore(moa)

Run the code above in your browser using DataLab