Learn R Programming

mogsa (version 1.6.4)

sup.moa: Projecting supplementary tables on object of class moa-class.

Description

Projecting supplementary tables on moa-class

Usage

sup.moa(X, sup, nf = 2, ks.stat=FALSE, ks.B = 1000, ks.cores = NULL)

Arguments

X
An object of class moa-class
sup
A list of data.frames contains supplementary data.
nf
The number of principal components used in the projection.
ks.stat
The logical indicates if the p-value should be calculated using K-S statistic (the method used in "ssgsea" in GSVA package). Default is FALSE, which means using the z-score method.
ks.B
An integer to indicate the number of bootstrapping samples to calculated the p-value of KS statistic.
ks.cores
An integer indicate the number of cores to be used in bootstrapping. It is passed to function mclapply in the parallel package.

Value

An object of class moa.sup-class.

Details

Projecting supplementary tables on moa-class, for details see reference.

References

Herve Abdi, Lynne J. Williams, Domininique Valentin and Mohammed Bennani-Dosse. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comput Stat 2012. Volume 4, Issue 2, pages 124-167 Haenzelmann, S., Castelo, R. and Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 14:7, 2013. Barbie, D.A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(5):108-112, 2009.

Examples

Run this code
    # library(mogsa)
    # loading gene expression data and supplementary data
    data(NCI60_4array_supdata)
    data(NCI60_4arrays)
    # check the dimension of each supplementary data to see how many gene set annotated the data
    sapply(NCI60_4array_supdata, dim)
    # run analysis
    ana <- moa(NCI60_4arrays, proc.row = "center_ssq1", w.data = "inertia", statis = TRUE)
    plot(ana, value="eig")
    # projectin supplementary data
    smoa <- sup.moa(ana, sup=NCI60_4array_supdata, nf=3)
    # heatmap visualize the gene set scores
    heatmap(slot(smoa, "score"))

Run the code above in your browser using DataLab