Returns a single or multiple completed data sets using two-way imputation with normally distributed errors.
twoway(X, nCompletedDataSets = 1, minX = defaultMinX, maxX = defaultMaxX, seed = FALSE)
matrix or data frame of integer data
containing the score of now(X)
respondents to nicol(X)
items.
Typically X
contains missing values.
Number of completed data sets.
Minimum item score. By default, the minimum item score is the lowest score found in the data.
Maximum item score. By default, the maximum item score is the highest score found in the data.
Seed for random sampling. If seed = FALSE
(default), no seed is given, otherwise seed
must be
a numeric value. Replications having the same seed result in exactly the same outcome value.
The result is X
for which the missing values have been replaced by imputed values. For multiple
imputations, the result is a list of matrices/data frames. For single
imputations, the result is a matrix/data frame.
For single imputation (nCompletedDataSets == 1
, default) the function returns an object of the same class as X
,
for multiple imputation (nCompletedDataSets > 1
) the function returns a list.
References for two-way imputation include Bernaards and Sijtsma (2000), Sijtsma and Van der Ark (2003),
and Van Ginkel, Van der Ark, and Sijtsma (2007).
Bernaards, C. A., & Sijtsma, K. (2000). Influence of simple imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable Multivariate Behavioral Research, 35, 321-364. https://doi.org/10.1207/S15327906MBR3503_03
Sijtsma, K., & Van der Ark, L. A. (2003). Investigation and treatment of missing item scores in test and questionnaire data. Multivariate Behavioral Research, 38, 505-528. https://doi.org/10.1207/s15327906mbr3804_4
Van Ginkel, J. R., Van dec Ark, L. A., & Sijtsma, K. (2007). Multiple imputation of item scores in test and questionnaire data, and influence on psychometric results. Multivariate aBehavioral Research, 42, 387-414. https://doi.org/10.1080/00273170701360803
# NOT RUN {
data(DS14)
# Handle missing data and recode negatively worded items
X <- DS14[, 3 : 16]
X <- twoway(X)
X <- recode(X, c(1, 3))
head(X)
# }
Run the code above in your browser using DataLab