data(acl)
# Select the scale Communality consisting of 10 items.
Communality <- acl[,1:10]
# Partition these 10 items into mokken scales using Mokken's automated item selection procedure.
scale <- aisp(Communality)
coefH(Communality[,scale==1], se = FALSE)
# Same but using items 1 and 2 in the startset.
scale <- aisp(Communality, StartSet = c(1, 2), verbose = TRUE)
coefH(Communality[,scale==1])
# Perform aisp for increasing lowerbounds
# \donttest{
scales <- aisp(Communality, lowerbound = seq(0, .55, .05))
scales
# }
# Use a significant test for criteria Hi > c (rather than the point estimate)
scale <- aisp(Communality, type.z = "WB", test.Hi = TRUE, verbose = TRUE)
coefH(Communality[,scale==1])
# Partition these 10 items into mokken scales using a genetic algorithm.
scale <- aisp(Communality,search="ga",maxgens=1000)
coefH(Communality[,scale==1])
# Perform aisp on two-level data
data(autonomySupport)
scores <- autonomySupport[, -1]
classes <- autonomySupport[, 1]
scale <- aisp(scores, type.z = "WB", level.two.var = classes)
coefH(scores[, scale==1], level.two.var = classes)
Run the code above in your browser using DataLab