# Examples from Ligtvoet et al. (2010).
data(acl)
Order <- acl[,41:50]
summary(check.iio(Order))
plot(check.iio(Order))
Autonomy <- acl[,91:100]
summary(check.iio(Autonomy))
plot(check.iio(Autonomy))
# Examples from Ligtvoet et al. (2011).
data(cavalini)
X1 <- cavalini[,c(3,5,6,7,9,11,13,14)]
# Use Method MIIO and remove items violating MIIO
iio.list1 <- check.iio(X1)
summary(iio.list1)
X2 <- X1[,is.na(charmatch(dimnames(X1)[[2]],names(iio.list1$items.removed)))]
# Use Method MSCPM and remove items violating MSCPM
iio.list2 <- check.iio(X2,method="MSCPM")
summary(iio.list2)
X3 <- X2[,is.na(charmatch(dimnames(X2)[[2]],names(iio.list2$items.removed)))]
# Use Method IT
iio.list3 <- check.iio(X3,method="IT")
summary(iio.list3)
# Examples for investigating the ordering structure of a clustered item set
# (Koopman & Braeken, 2024)
# \donttest{
data("trog")
clusters <- rep(1:20, each = 4)
ico <- check.iio(trog, item.selection = FALSE, fixed.item.order = clusters)
summary(ico)
# }
# Compute two-level fit statistics (Koopman et al., 2023a, 2023b)
# \donttest{
data("autonomySupport")
dat <- autonomySupport[, -1]
groups <- autonomySupport[, 1]
autonomyMIIO <- check.iio(dat, item.selection = FALSE, level.two.var = groups)
summary(autonomyMIIO)
plot(autonomyMIIO)
# }
Run the code above in your browser using DataLab