# Examples from Ligtvoet et al. (2011).
data(cavalini)
X1 <- cavalini[,c(3,5,6,7,9,11,13,14)]
# Use Method MIIO and remove items violating MIIO
iio.list1 <- check.iio(X1)
summary(iio.list1)
plot(iio.list1)
X2 <- X1[,is.na(charmatch(dimnames(X1)[[2]],names(iio.list1$items.removed)))]
# Use Method MSCPM and remove items violating MSCPM
iio.list2 <- check.iio(X2,method="MSCPM")
summary(iio.list2)
X3 <- X2[,is.na(charmatch(dimnames(X2)[[2]],names(iio.list2$items.removed)))]
# Use Method IT
iio.list3 <- check.iio(X3,method="IT")
summary(iio.list3)
# Compute two-level fit statistics (Koopman et al., 2023a, 2023b)
data("autonomySupport")
dat <- autonomySupport[, -1]
groups <- autonomySupport[, 1]
autonomyMIIO <- check.iio(dat, item.selection = FALSE, level.two.var = groups)
summary(autonomyMIIO)
Run the code above in your browser using DataLab