Learn R Programming

mombf

Model Selection with Bayesian Methods and Information Criteria

Installation

# Install mombf from CRAN
install.packages("mombf")

# from GitHub:
# install.packages("devtools")
devtools::install_github("davidrusi/mombf")

Quick start

The main Bayesian model selection (BMS) function is modelSelection. For information criteria consider bestBIC, bestEBIC, bestAIC, bestIC. Bayesian model averaging (BMA) is also available for some models, mainly linear and generalized linear models. Local variable selection is implemented in localnulltest and localnulltest_fda. Details are in mombf's vignette, here we illustrate quickly how to get posterior model probabilities, marginal posterior inclusion probabilities, BMA point estimates and posterior intervals for the regression coefficients and predicted outcomes.

library(mombf)
set.seed(1234)
x <- matrix(rnorm(100*3),nrow=100,ncol=3)
theta <- matrix(c(1,1,0),ncol=1)
y <- x %*% theta + rnorm(100)

priorCoef <- momprior(tau=0.348)  # Default MOM prior on parameters
priorDelta <- modelbbprior(1,1)   # Beta-Binomial prior for model space
fit1 <- modelSelection(y ~ x[,1]+x[,2]+x[,3], priorCoef=priorCoef, priorDelta=priorDelta)
# Output
# Enumerating models...
# Computing posterior probabilities................ Done.

from here, we can also get the posterior model probabilities:

postProb(fit1)
# Output
#    modelid family           pp
# 7      2,3 normal 9.854873e-01
# 8    2,3,4 normal 7.597369e-03
# 15   1,2,3 normal 6.771575e-03
# 16 1,2,3,4 normal 1.437990e-04
# 3        3 normal 3.240602e-17
# 5        2 normal 7.292230e-18
# 4      3,4 normal 2.150174e-19
# 11     1,3 normal 9.892869e-20
# 6      2,4 normal 5.615517e-20
# 13     1,2 normal 2.226164e-20
# 12   1,3,4 normal 1.477780e-21
# 14   1,2,4 normal 3.859388e-22
# 1          normal 2.409908e-25
# 2        4 normal 1.300748e-27
# 9        1 normal 2.757778e-28
# 10     1,4 normal 3.971521e-30

also the BMA estimates, 95% intervals, marginal posterior probability

coef(fit1)
# Output
#              estimate        2.5%      97.5%      margpp
# (Intercept) 0.007230966 -0.02624289 0.04085951 0.006915374
# x[, 1]      1.134700387  0.93487948 1.33599873 1.000000000
# x[, 2]      1.135810652  0.94075622 1.33621298 1.000000000
# x[, 3]      0.000263446  0.00000000 0.00000000 0.007741168
# phi         1.100749637  0.83969879 1.44198567 1.000000000

and BMA predictions for y, 95% intervals

ypred <- predict(fit1)
head(ypred)
# Output
#         mean       2.5%       97.5%
# 1 -0.8936883 -1.1165154 -0.67003262
# 2 -0.2162846 -0.3509188 -0.08331286
# 3  1.3152329  1.0673711  1.56348261
# 4 -3.2299241 -3.6826696 -2.77728625
# 5 -0.4431820 -0.6501280 -0.23919345
# 6  0.7727824  0.6348189  0.90977798
cor(y, ypred[,1])
# Output
#           [,1]
# [1,] 0.8468436

Bug report

Please submit bug reports to the issue tracker.

Copy Link

Version

Install

install.packages('mombf')

Monthly Downloads

888

Version

3.5.4

License

GPL (>= 2) | file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

February 6th, 2024

Functions in mombf (3.5.4)

icfit-class

Class "icfit"
mixturebf-class

Class "mixturebf"
getBIC

Obtain AIC, BIC, EBIC or other general information criteria (getIC)
hald

Hald Data
modelSelectionGGM

Bayesian variable selection for linear models via non-local priors.
modelSelection

Bayesian variable selection for linear models via non-local priors.
priorp2g

Moment and inverse moment prior elicitation
marginalNIW

Marginal likelihood under a multivariate Normal likelihood and a conjugate Normal-inverse Wishart prior.
localnulltest

Local variable selection
icov

Extract estimated inverse covariance
msfit_ggm-class

Class "msfit_ggm"
plotprior

Plot estimated marginal prior inclusion probabilities
mombf

Moment and inverse moment Bayes factors for linear models.
nlpmarginals

Marginal density of the observed data for linear regression with Normal, two-piece Normal, Laplace or two-piece Laplace residuals under non-local and Zellner priors
postModeOrtho

Bayesian model selection and averaging under block-diagonal X'X for linear models.
momknown

Bayes factors for moment and inverse moment priors
rnlp

Posterior sampling for regression parameters
msfit-class

Class "msfit"
msPriorSpec-class

Class "msPriorSpec"
postSamples

Extract posterior samples from an object
postProb

Obtain posterior model probabilities
dalapl

Density and random draws from the asymmetric Laplace distribution
bbPrior

Priors on model space for variable selection problems
bestBIC

Model with best AIC, BIC, EBIC or other general information criteria (getIC)
ddir

Dirichlet density
diwish

Density for Inverse Wishart distribution
dmom

Non-local prior density, cdf and quantile functions.
bfnormmix

Number of Normal mixture components under Normal-IW and Non-local priors
cil

Treatment effect estimation for linear models via Confounder Importance Learning using non-local priors.
eprod

Expectation of a product of powers of Normal or T random variables
dpostNIW

Posterior Normal-IWishart density