Learn R Programming

mosaic (version 0.5-1)

qdata: The Data Distribution

Description

Density, distribution function, quantile function, and random generation from data.

pdata computes cumulative probabilities from data.

rdata randomly samples from data. It is a wrapper around sample that unifies syntax.

ddata computes a probability mass function from data.

Usage

qdata(p, vals, data = NULL, ...)

pdata(q, vals, data = NULL, lower.tail = TRUE, ...)

rdata(n, vals, data = NULL, replace = TRUE, ...)

ddata(x, vals, data = NULL, log = FALSE, ...)

Arguments

p
a vector of probabilities
vals
a vector containing the data
data
a data frame in which to evaluate vals
...
additional arguments passed to quantile or sample
q
a vector of quantiles
lower.tail
a logical indicating whether to use the lower or upper tail probability
n
number of values to sample
replace
a logical indicating whether to sample with replacement
x
a vector of quantiles
log
a logical indicating whether the result should be log transformed

Value

  • For qdata, a vector of quantiles

    For pdata, a vector of probabilities

    For rdata, a vector of values sampled from vals

    For ddata, a vector of probabilities (empirical densities)

Details

qdata is a wrapper around quantile that makes the syntax more like the syntax for quantiles from theoretical distributions

Examples

Run this code
data(iris)
qdata(.5, iris$Sepal.Length)
qdata(.5, Sepal.Length, data=iris)
data(iris)
pdata(3:6, iris$Sepal.Length)
pdata(3:6, Sepal.Length, data=iris)
data(iris)
rdata(10,iris$Species)
rdata(10, Species, data=iris)
data(iris)
ddata('setosa', iris$Species)
ddata('setosa', Species, data=iris)

Run the code above in your browser using DataLab