Compute composite loss value
loss3(y, mu, theta, weights, cfun, family, s, delta)
Weighted loss values
response variable values, 0/1 if family=2
, or binomial
response prediction of y
. If mu
is linear predictor, use function loss2
instead
scale parameter for family=4
, negative binomial
observation weights, same length as y
integer from 1-8, concave function as in irglm_fit
integer 2, 3 or 4, convex function binomial, Poisson or negative binomial, respectively
tuning parameter of cfun
. s > 0
and can be equal to 0 for cfun="tcave"
.
a small positive number provided by user only if cfun="gcave"
and 0 < s <1
Zhu Wang <zwang145@uthsc.edu>
For large s
values, the loss can be 0 with cfun=2,3,4
, or "acave", "bcave", "ccave".
Zhu Wang (2024) Unified Robust Estimation, Australian & New Zealand Journal of Statistics. 66(1):77-102.
loss2
irglm
irglmreg
loss2_irsvm