Mark-Recapture Analysis of Independent Observer Configuration with Full Independence
# S3 method for io.fi
ddf(
dsmodel = NULL,
mrmodel,
data,
method,
meta.data = list(),
control = list(),
call = ""
)
result: an io.fi model object
not used
mark-recapture model specification
analysis dataframe
analysis method; only needed if this function called from
ddf.io
list containing settings controlling data structure
list containing settings controlling model fitting
original function call used to call ddf
Jeff Laake
The mark-recapture data derived from an independent observer distance sampling survey can be used to derive conditional detection functions (p_j(y)) for both observers (j=1,2). They are conditional detection functions because detection probability for observer j is based on seeing or not seeing observations made by observer 3-j. Thus, p_1(y) is estimated by p_1|2(y).
If detections by the observers are independent (full independence) then p_1(y)=p_1|2(y),p_2(y)=p_2|1(y) and for the union, full independence means that p(y)=p_1(y) + p_2(y) - p_1(y)*p_2(y) for each distance y. In fitting the detection functions the likelihood given by eq 6.8 and 6.16 in Laake and Borchers (2004) is used. That analysis does not require the usual distance sampling assumption that perpendicular distances are uniformly distributed based on line placement that is random relative to animal distribution. However, that assumption is used in computing predicted detection probability which is averaged based on a uniform distribution (see eq 6.11 of Laake and Borchers 2004).
For a complete description of each of the calling arguments, see
ddf
. The argument model
in this function is the same
as mrmodel
in ddf
. The argument dataname
is the name
of the dataframe specified by the argument data
in ddf
. The
arguments control
,meta.data
,and method
are defined the
same as in ddf
.
Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. In: Advanced Distance Sampling, eds. S.T. Buckland, D.R.Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. Oxford University Press.
ddf.io
,summary.io.fi
,coef.io.fi
,
plot.io.fi
,gof.io.fi
,io.glm