powered by
Generate simulation data for benchmarking sparse Cox regression models.
msaenet.sim.cox( n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001 )
List of x.tr, x.te, y.tr, and y.te.
x.tr
x.te
y.tr
y.te
Number of observations.
Number of variables.
Correlation base for generating correlated variables.
Vector of non-zero coefficients.
Signal-to-noise ratio (SNR).
Percentage of training set.
Random seed for reproducibility.
Nan Xiao <https://nanx.me>
Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 39(5), 1--13.
dat <- msaenet.sim.cox( n = 300, p = 500, rho = 0.6, coef = rep(1, 10), snr = 3, p.train = 0.7, seed = 1001 ) dim(dat$x.tr) dim(dat$x.te) dim(dat$y.tr) dim(dat$y.te)
Run the code above in your browser using DataLab