powered by
Generate simulation data (Gaussian case) following the settings in Xiao and Xu (2015).
msaenet.sim.gaussian( n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001 )
List of x.tr, x.te, y.tr, and y.te.
x.tr
x.te
y.tr
y.te
Number of observations.
Number of variables.
Correlation base for generating correlated variables.
Vector of non-zero coefficients.
Signal-to-noise ratio (SNR). SNR is defined as $$ \frac{Var(E(y | X))}{Var(Y - E(y | X))} = \frac{Var(f(X))}{Var(\varepsilon)} = \frac{Var(X^T \beta)}{Var(\varepsilon)} = \frac{Var(\beta^T \Sigma \beta)}{\sigma^2}. $$
Percentage of training set.
Random seed for reproducibility.
Nan Xiao <https://nanx.me>
Nan Xiao and Qing-Song Xu. (2015). Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection. Journal of Statistical Computation and Simulation 85(18), 3755--3765.
dat <- msaenet.sim.gaussian( n = 300, p = 500, rho = 0.6, coef = rep(1, 10), snr = 3, p.train = 0.7, seed = 1001 ) dim(dat$x.tr) dim(dat$x.te)
Run the code above in your browser using DataLab