powered by
Generate simulation data for benchmarking sparse Poisson regression models.
msaenet.sim.poisson( n = 300, p = 500, rho = 0.5, coef = rep(0.2, 50), snr = 1, p.train = 0.7, seed = 1001 )
List of x.tr, x.te, y.tr, and y.te.
x.tr
x.te
y.tr
y.te
Number of observations.
Number of variables.
Correlation base for generating correlated variables.
Vector of non-zero coefficients.
Signal-to-noise ratio (SNR).
Percentage of training set.
Random seed for reproducibility.
Nan Xiao <https://nanx.me>
dat <- msaenet.sim.poisson( n = 300, p = 500, rho = 0.6, coef = rep(1, 10), snr = 3, p.train = 0.7, seed = 1001 ) dim(dat$x.tr) dim(dat$x.te)
Run the code above in your browser using DataLab