## S3 method for class 'msgl':
predict(object, x, sparse.data = FALSE,
...)
msgl
.x
will be treated as
sparse, if x
is a sparse matrix it will be treated
as sparse by default.length(fit$beta)
one item for each model, with
each item a matrix of size $K \times N_\textrm{new}$
containing the linear predictors.length(fit$beta)
one item for each model, with
each item a matrix of size $K \times N_\textrm{new}$
containing the probabilities.length(fit$beta)
.