# Start with example from msfit
tmat <- trans.illdeath()
tg <- data.frame(illt=c(1,1,6,6,8,9),ills=c(1,0,1,1,0,1),
dt=c(5,1,9,7,8,12),ds=c(1,1,1,1,1,1),
x1=c(1,1,1,0,0,0),x2=c(6:1))
tglong <- msprep(time=c(NA,"illt","dt"),status=c(NA,"ills","ds"),
data=tg,keep=c("x1","x2"),trans=tmat)
tglong <- expand.covs(tglong,c("x1","x2"))
cx <- coxph(Surv(Tstart,Tstop,status)~x1.1+x2.2+strata(trans),
data=tglong,method="breslow")
newdata <- data.frame(trans=1:3,x1.1=c(0,0,0),x2.2=c(0,1,0),strata=1:3)
msf <- msfit(cx,newdata,trans=tmat)
# Default, all transitions, with SE
summary(msf)
summary(msf, conf.type="plain")
# Only transitions 1 and 3
summary(msf, tra=c(1, 3))
# Default is 95% confidence interval, change here to 90%
summary(msf, conf.int=0.90)
# Do not show variances (nor confidence intervals)
summary(msf, variance=FALSE)
# Cumulative hazards only at specified time points
summary(msf, times=seq(0, 15, by=3))
# Last specified time point is larger than last observed, not printed
# Use extend=TRUE as in summary.survfit
summary(msf, times=seq(0, 15, by=3), extend=TRUE)
# Different types of confidence intervals, default is log
summary(msf, times=seq(0, 15, by=3), conf.type="plain")
summary(msf, times=seq(0, 15, by=3), conf.type="no")
# When the number of time points specified is larger than 12, head and tail is shown
x <- summary(msf, times=seq(5, 8, by=0.25))
x
Run the code above in your browser using DataLab