set.seed(1987)
##Generates a data matrix of dimension 50X13
n=50; m=13
x <- matrix(runif(n*m, min = -5, max = 10), nrow=n, ncol=m)
##Computes a distance matrix of x.
library("stats")
d <- base::as.matrix(stats::dist(x, method="euclidean"))
##Generates complete graph (CG)
cg <- generate.complete.graph(1:nrow(x),d)
##Generates a proximity graph (MST)
mstree <- generate.mst(cg)
##Calculate the edge cost sum of proximity graph (MST)
mstree.cost=as.numeric(compute.costs.proximity.graph(as.matrix(mstree$edges.mst.graph[,1:2]), d))
mstree.cost
##Generates a proximity graph (kNN)
knneig <- generate.knn(cg)
##Calculate the edge cost sum of proximity graph (kNN)
knneig.cost=as.numeric(compute.costs.proximity.graph(as.matrix(knneig$edges.knn.graph[,1:2]), d))
knneig.cost
Run the code above in your browser using DataLab