## Sensitivity analysis of the "Ishigami" model with the "Fast" method
# Example I: by using the class constructors: mtkFastDesigner() and mtkFastAnalyser()
# Input the factors
data(Ishigami.factors)
# Build the processes and workflow:
# 1) the design process
exp1.designer <- mtkFastDesigner(listParameters
= list(n=1000))
# 2) the simulation process
exp1.evaluator <- mtkNativeEvaluator(model="Ishigami")
# 3) the analysis process
exp1.analyser <- mtkFastAnalyser()
# 4) the workflow
exp1 <- mtkExpWorkflow(expFactors=Ishigami.factors,
processesVector = c(design=exp1.designer,
evaluate=exp1.evaluator, analyze=exp1.analyser))
# Run the workflow and reports the results.
run(exp1)
print(exp1)
plot(exp1)
## Example II: by using the class constructors: mtkNativeDesigner() and mtkFastAnalyser()
# Generate the factors
data(Ishigami.factors)
# Build the processes and workflow:
# 1) the design process
exp1.designer <- mtkNativeDesigner(design = "Fast",information=list(n=1000))
# 2) the simulation process
exp1.evaluator <- mtkNativeEvaluator(model="Ishigami")
# 3) the analysis process with the default method
exp1.analyser <- mtkFastAnalyser()
# 4) the workflow
exp1 <- mtkExpWorkflow(expFactors=Ishigami.factors,
processesVector = c(design=exp1.designer,
evaluate=exp1.evaluator, analyze=exp1.analyser))
# Run the workflow and reports the results.
run(exp1)
plot(exp1)
## Example III: by using the class constructors: mtkFastDesigner() and mtkDefaultAnalyser()
# Generate the factors
data(Ishigami.factors)
# Build the processes and workflow:
# 1) the design process
exp1.designer <- mtkFastDesigner( listParameters = list(n=2000))
# 2) the simulation process
exp1.evaluator <- mtkNativeEvaluator(model="Ishigami")
# 3) the analysis process with the default method
exp1.analyser <- mtkDefaultAnalyser()
# 4) the workflow
exp1 <- mtkExpWorkflow(expFactors=Ishigami.factors,
processesVector = c(design=exp1.designer,
evaluate=exp1.evaluator, analyze=exp1.analyser))
# Run the workflow and reports the results.
run(exp1)
plot(exp1)
Run the code above in your browser using DataLab