## Example: Sensitivity analysis for the Ishigami model
# Define the factors
x1 <- make.mtkFactor(name="x1", distribName="unif",
distribPara=list(min=-pi, max=pi))
x2 <- make.mtkFactor(name="x2", distribName="unif",
distribPara=list(min=-pi, max=pi))
x3 <- make.mtkFactor(name="x3", distribName="unif",
distribPara=list(min=-pi, max=pi))
ishi.factors <- mtkExpFactors(list(x1,x2,x3))
# Build the processes
designer <- mtkNativeDesigner("BasicMonteCarlo",
information=list(size=20))
model <- mtkNativeEvaluator("Ishigami" )
analyser <- mtkNativeAnalyser("Regression", information=list(nboot=20) )
# Build the workflow and run it
ishiReg <- mtkExpWorkflow(expFactors=ishi.factors,
processesVector=c( design=designer,
evaluate=model,
analyze=analyser)
)
run(ishiReg)
# Extract as a data.frame the experiment design:
designer <- getProcess(ishiReg, "design")
expDesign <- getData(designer)
Run the code above in your browser using DataLab