## 1) Create a model simulation with the model "Ishigami" implemented in the package "mtk"
evaluator <- mtkNativeEvaluator(model="Ishigami")
## 2) Create a model simulation with a R function implemented outside the package "mtk"
# a) Create a R function to represent the model of population
ME <- function(K, Y0, a, t=5, ...){
res <- exp(-a*t)
res <- Y0+res*(K-Y0)
res <- K*Y0/res
out <- as.integer(res)
return(out)
}
# b) Do the sensitivity analysis for the function "ME"
K <- make.mtkFactor(name="K", nominal=400, distribName="unif",
distribPara=list(min=100, max=1000))
Y0 <- make.mtkFactor(name="Y0", nominal=20, distribName="unif",
distribPara=list(min=1, max=40))
a <- make.mtkFactor(name="a", nominal=0.1, distribName="unif",
distribPara=list(min=0.05, max=0.2))
factors <- mtkExpFactors(list(K,Y0,a))
plan <- mtkNativeDesigner ("BasicMonteCarlo",
information=c(size=500))
model <- mtkNativeEvaluator(model=ME, information=c(t=5))
index<- mtkNativeAnalyser("Regression", information=c(nboot=20) )
expt <- mtkExpWorkflow( expFactors=factors,
processesVector=c(
design= plan,
evaluate= model,
analyze= index)
)
run(expt)
summary(expt)
## 3) Import the results of model simulation produced off-line
## into an object of mtkNativeEvaluator
data <- data.frame()
model <- mtkNativeEvaluator(Y=data,
information = list(model="Ishigami"))
Run the code above in your browser using DataLab