Learn R Programming

mtk (version 1.0)

mtkWWDMEvaluator-class: The mtkWWDMEvaluator class

Description

The mtkWWDMEvaluator class is a sub-class of the class mtkEvaluator used to manage the simulation of the model WWDM.

Arguments

Class Hierarchy

Parent classes :
mtkEvaluator
Direct Known Subclasses :

Constructor

mtkWWDMEvaluator
signature(mtkParameters = NULL, listParameters = NULL)

Slots

name:
(character) always takes the string "evaluate".
protocol:
(character) a string to name the protocol used to run the process: http, system, R, etc. Here, it always takes the character "R".
site:
(character) a string to indicate where the service is located. Here, it always takes the string "mtk".
service:
(character) a string to name the service to invoke. Here, it always takes the string "WWDM".
parameters:
(vector) a vector of [mtkParameter] containing the parameters to pass while calling the service. The WWDM model does not need parameters.
ready:
(logical) a logical to tell if the process is ready to run.
state:
(logical) a logical to tell if the results produced by the process are available and ready to be consumed.
result:
(ANY) a data holder to hold the results produced by the process

Methods

setName
signature(this = "mtkWWDMEvaluator", name = "character"): Not used, method inherited from the parent class.
setParameters
signature(this = "mtkWWDMEvaluator", f = "vector"): Assigns new parameters to the process.
getParameters
signature(this = "mtkWWDMEvaluator"): Returns the parameters as a named list.
is.ready
signature( = "mtkWWDMEvaluator"): Tests if the process is ready to run.
setReady
signature(this = "mtkWWDMEvaluator", switch = "logical"): Makes the process ready to run.
is.ready
signature( = "mtkWWDMEvaluator"): Tests if the results produced by the process are available.
setReady
signature(this = "mtkWWDMEvaluator", switch = "logical"): Marks the process as already executed.
getResult
signature(this = "mtkWWDMEvaluator"): Returns the results produced by the process as a [mtkWWDMEvaluatorResult].
getData
signature(this = "mtkWWDMEvaluator"): Returns the results produced by the process as a data.frame.
serializeOn
signature(this = "mtkWWDMEvaluator"): Returns all data managed by the process as a named list.
run
signature(this = "mtkWWDMEvaluator", context= "mtkExpWorkflow"): runs the simulation.
summary
signature(object = "mtkWWDMEvaluator"): Provides a summary of the results produced by the process.
print
signature(x = "mtkWWDMEvaluator"): Prints a report of the results produced by the process.
plot
signature(x = "mtkWWDMEvaluator"): Plots the results produced by the process.
report
signature(this = "mtkWWDMEvaluator"): Reports the results produced by the process.

References

  1. J. Wang, H. Richard, R. Faivre, H. Monod (2013). Le package mtk, une bibliothèque R pour l'exploration numérique des modèles. In: Analyse de sensibilité et exploration de modèles : Application aux sciences de la nature et de l'environnement (R. Faivre, B. Iooss, S. Mahévas, D. Makowski, H. Monod, Eds). Editions Quae, Versailles.
  2. R. Faivre, D. Makowski, J. Wang, H. Richard, R. Monod (2013). Exploration numérique d'un modèle agronomique avec le package mtk. In: Analyse de sensibilité et exploration de modèles : Application aux sciences de la nature et de l'environnement (R. Faivre, B. Iooss, S. Mahévas, D. Makowski, H. Monod, Eds). Editions Quae, Versailles.

See Also

help(WWDM)

Examples

Run this code

# Carry out a sensitivity analysis with the WWDM model

##	Input the factors
	data(WWDM.factors)

##	Specify the experiments designer
	designer <- mtkMorrisDesigner (
		listParameters = list(type="oat", levels=5, grid.jump=3, r=10)
		)

##	Specify the model simulator
	model <- mtkWWDMEvaluator(
		listParameters = list(year=3)
		)
	
##	Specify the sensiticity analyser
	analyser <- mtkMorrisAnalyser()

##	Specify the workflow
	exp <- new("mtkExpWorkflow", expFactors=WWDM.factors,
		   processesVector=c(
				              design=designer,
				              evaluate=model,
				              analyze=analyser)
			  				)
## Run and report the results
	run(exp)
	summary(exp)

Run the code above in your browser using DataLab