Learn R Programming

multilevel (version 2.7)

rgr.ols: Random Group Resampling OLS Regression

Description

Uses Random Group Resampling (RGR) within an Ordinary Least Square (OLS) framework to contrast actual group results with pseudo group results. This specific function performs an RGR on an OLS hierarchical OLS model with two predictors as in Bliese & Halverson (2002). To run this analysis on data with more predictors, the function would have to be modified.

Usage

rgr.ols(xdat1,xdat2,ydata,grpid,nreps)

Arguments

xdat1

The first predictor.

xdat2

The second predictor.

ydata

The outcome.

grpid

The group identifier.

nreps

The number of pseudo groups to create.

Value

A matrix containing mean squares. Each row provides mean square values for a single pseudo group iteration

References

Bliese, P. D., & Halverson, R. R. (2002). Using random group resampling in multilevel research. Leadership Quarterly, 13, 53-68.

See Also

mix.data

Examples

Run this code
# NOT RUN {
data(lq2002)
RGROUT<-rgr.ols(lq2002$LEAD,lq2002$TSIG,lq2002$HOSTILE,lq2002$COMPID,100)

#Compare values to those reported on p.62 in Bliese & Halverson (2002)
summary(RGROUT)  
# }

Run the code above in your browser using DataLab