Uses Random Group Resampling (RGR) within an Ordinary Least Square (OLS)
framework to contrast actual group results with pseudo group results. This specific
function performs an RGR on an OLS hierarchical OLS model with two predictors as
in Bliese & Halverson (2002). To run this analysis on data with more predictors,
the function would have to be modified.
Usage
rgr.ols(xdat1,xdat2,ydata,grpid,nreps)
Arguments
xdat1
The first predictor.
xdat2
The second predictor.
ydata
The outcome.
grpid
The group identifier.
nreps
The number of pseudo groups to create.
Value
A matrix containing mean squares. Each row provides mean square values for a single pseudo
group iteration
References
Bliese, P. D., & Halverson, R. R. (2002). Using random group resampling in multilevel research. Leadership Quarterly, 13, 53-68.
# NOT RUN {data(lq2002)
RGROUT<-rgr.ols(lq2002$LEAD,lq2002$TSIG,lq2002$HOSTILE,lq2002$COMPID,100)
#Compare values to those reported on p.62 in Bliese & Halverson (2002)summary(RGROUT)
# }