Learn R Programming

multiwave (version 1.4)

DWTexact: Exact discrete wavelet decomposition

Description

Computes the discrete wavelet transform of the data using the pyramidal algorithm.

Usage

DWTexact(x, filter)

Arguments

x

vector of raw data

filter

Quadrature mirror filter (also called scaling filter, as returned by the scaling_filter function)

Value

dwt

computable Wavelet coefficients without taking into account the border effect.

indmaxband

vector containing the largest index of each band, i.e. for \(j > 1\) the wavelet coefficients of scale \(j\) are \(\code{dwt}(k)\) for \(k \in [\code{indmaxband}(j-1)+1,\code{indmaxband}(j)]\) and for \(j=1\), \(\code{dwt}(k)\) for \(k \in [1,\code{indmaxband}(1)]\).

Jmax

largest available scale index (=length of indmaxband).

References

G. Fay, E. Moulines, F. Roueff, M. S. Taqqu (2009) Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics, vol. 151, N. 2, pages 159-177.

S. Achard, I. Gannaz (2016) Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391.

S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.

See Also

scaling_filter

Examples

Run this code
# NOT RUN {
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
u <- rnorm(2^10,0,1)
x <- vfracdiff(u,d=0.2)

	resw <- DWTexact(x,filter)
		xwav <- resw$dwt
		index <- resw$indmaxband
		Jmax <- resw$Jmax

## Wavelet scale 1
ws_1 <- xwav[1:index[1]]
## Wavelet scale 2
ws_2 <- xwav[(index[1]+1):index[2]]
## Wavelet scale 3
ws_3 <- xwav[(index[2]+1):index[3]]
### upto Jmax



# }

Run the code above in your browser using DataLab