# NOT RUN {
rho<-0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d<-c(0.4,0.2)
J <- 9
N <- 2^J
resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov
#### Compute wavelets this is also included in the functions without _wav
res_filter <- scaling_filter('Daubechies',8);
filter <- res_filter$h
M <- res_filter$M
alpha <- res_filter$alpha
LU <- c(1,11)
if(is.matrix(x)){
N <- dim(x)[1]
k <- dim(x)[2]
}else{
N <- length(x)
k <- 1
}
mat_x <- as.matrix(x,dim=c(N,k))
## Wavelet decomposition
xwav <- matrix(0,N,k)
for(j in 1:k){
xx <- mat_x[,j]
resw <- DWTexact(xx,filter)
xwav_temp <- resw$dwt
index <- resw$indmaxband
Jmax <- resw$Jmax
xwav[1:index[Jmax],j] <- xwav_temp;
}
## we free some memory
new_xwav <- matrix(0,min(index[Jmax],N),k)
if(index[Jmax]<N){
new_xwav[(1:(index[Jmax])),] <- xwav[(1:(index[Jmax])),]
}
xwav <- new_xwav
index <- c(0,index)
##### Compute the wavelet functions
res_psi <- psi_hat_exact(filter,J)
psih<-res_psi$psih
grid<-res_psi$grid
##### Estimate using Fourier #############
m <- floor(N^{0.65}) ## default value of Shimotsu
res_mfw <- mfw(x,m)
res_d_mfw<-res_mfw$d
res_rho_mfw<-res_mfw$cov[1,2]
### Eval MFW
res_mfw_eval <- mfw_eval(d,x,m)
res_mfw_cov_eval <- mfw_cov_eval(d,x,m)
###### Estimate using Wavelets #############
## Using xwav
if(dim(xwav)[2]==1) xwav<-as.vector(xwav)
res_mww_wav <- mww_wav(xwav,index,psih,grid,LU)
### Eval MWW_wav
res_mww_wav_eval <- mww_wav_eval(d,xwav,index,LU)
res_mww_wav_cov_eval <- mww_wav_cov_eval(d,xwav,index,psih,grid,LU)
## Using directly the time series
res_mww <- mww(x,filter,LU)
res_d_mww<-res_mww$d
res_rho_mww<-res_mww$cov[1,2]
### Eval MWW_wav
res_mww_eval <- mww_eval(d,x,filter,LU)
res_mww_cov_eval <- mww_cov_eval(d,x,filter,LU)
# }
Run the code above in your browser using DataLab