Learn R Programming

multiway (version 1.0-2)

multiway-package: Component Models for Multi-Way Data

Description

Fits multi-way component models via alternating least squares algorithms with optional constraints (orthogonality and non-negativity). Fit models include Individual Differences Scaling, Parallel Factor Analysis (1 and 2), Simultaneous Component Analysis, and Tucker Factor Analysis.

Arguments

Details

indscal fits the Individual Differences Scaling model. parafac fits the 3-way and 4-way Parallel Factor Analysis-1 model. parafac2 fits the 3-way and 4-way Parallel Factor Analysis-2 model. sca fits the four different Simultaneous Component Analysis models. tucker fits the 3-way and 4-way Tucker Factor Analysis model.

References

Bro, R., & De Jong, S. (1997). A fast non-negativity-constrained least squares algorithm. Journal of Chemometrics, 11, 393-401.

Bro, R., & Kiers, H.A.L. (2003). A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics, 17, 274-286.

Carroll, J. D., & Chang, J-J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decmoposition. Psychometrika, 35, 283-319.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84.

Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA Working Papers in Phonetics, 22, 30-44.

Harshman, R. A., & Lundy, M. E. (1994). PARAFAC: Parallel factor analysis. Computational Statistics and Data Analysis, 18, 39-72.

Helwig, N. E. (2013). The special sign indeterminacy of the direct-fitting Parafac2 model: Some implications, cautions, and recommendations, for Simultaneous Component Analysis. Psychometrika, 78, 725-739.

Kiers, H. A. L., ten Berge, J. M. F., & Bro, R. (1999). PARAFAC2-part I: A direct-fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13, 275-294.

Kroonenberg, P. M., & de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 69-97.

Moore, E.H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society 26, 394-395.

Penrose, R. (1950). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society 51, 406-413.

Timmerman, M. E., & Kiers, H. A. L. (2003). Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika, 68, 105-121.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279-311.

Examples

Run this code
# See examples for indscal, parafac, parafac2, sca, and tucker

Run the code above in your browser using DataLab