Learn R Programming

multiway (version 1.0-7)

sca: Simultaneous Component Analysis

Description

Fits Timmerman and Kiers's four Simultaneous Component Analysis (SCA) models to a 3-way data array or a list of 2-way arrays with the same number of columns.

Usage

sca(X, nfac, nstart = 10, maxit = 500,
    type = c("sca-p", "sca-pf2", "sca-ind", "sca-ecp"),
    rotation = c("none", "varimax", "promax"),
    ctol = 1e-4, parallel = FALSE, cl = NULL, verbose = TRUE)

Value

D

List of length K where k-th element contains D[[k]].

B

Mode B weight matrix.

C

Mode C weight matrix.

Phi

Mode A common crossproduct matrix (if type!="sca-p").

SSE

Sum of Squared Errors.

Rsq

R-squared value.

GCV

Generalized Cross-Validation.

edf

Effective degrees of freedom.

iter

Number of iterations.

cflag

Convergence flag.

type

Same as input type.

rotation

Same as input rotation.

Arguments

X

List of length K where the k-th element contains the I[k]-by-J data matrix X[[k]]. If I[k]=I[1] for all k, can input 3-way data array with dim=c(I,J,K).

nfac

Number of factors.

nstart

Number of random starts.

maxit

Maximum number of iterations.

type

Type of SCA model to fit.

rotation

Rotation to use for type="sca-p" or type="sca-ecp".

ctol

Convergence tolerance.

parallel

Logical indicating if parLapply should be used. See Examples.

cl

Cluster created by makeCluster. Only used when parallel=TRUE.

verbose

If TRUE, fitting progress is printed via txtProgressBar. Ignored if parallel=TRUE.

Author

Nathaniel E. Helwig <helwig@umn.edu>

Warnings

The ALS algorithm can perform poorly if the number of factors nfac is set too large.

Computational Details

The least squares SCA-P solution can be obtained from the singular value decomposition of the stacked matrix rbind(X[[1]],...,X[[K]]).

The least squares SCA-PF2 solution can be obtained using the uncontrained Parafac2 ALS algorithm (see parafac2).

The least squares SCA-IND solution can be obtained using the Parafac2 ALS algorithm with orthogonality constraints on Mode A.

The least squares SCA-ECP solution can be obtained using the Parafac2 ALS algorithm with orthogonality constraints on Mode A and the Mode C weights fixed at C[k,] = rep(I[k]^0.5,R).

Details

Given a list of matrices X[[k]] = matrix(xk,I[k],J) for k = seq(1,K), the SCA model is

X[[k]] = tcrossprod(D[[k]],B) + E[[k]]

where D[[k]] = matrix(dk,I[k],R) are the Mode A (first mode) weights for the k-th level of Mode C (third mode), B = matrix(b,J,R) are the Mode B (second mode) weights, and E[[k]] = matrix(ek,I[k],J) is the residual matrix corresponding to k-th level of Mode C.

There are four different versions of the SCA model: SCA with invariant pattern (SCA-P), SCA with Parafac2 constraints (SCA-PF2), SCA with INDSCAL constraints (SCA-IND), and SCA with equal average crossproducts (SCA-ECP). These four models differ with respect to the assumed crossproduct structure of the D[[k]] weights:

SCA-P:crossprod(D[[k]])/I[k] = Phi[[k]]
SCA-PF2:crossprod(D[[k]])/I[k] = diag(C[k,])%*%Phi%*%diag(C[k,])
SCA-IND:crossprod(D[[k]])/I[k] = diag(C[k,]*C[k,])
SCA-ECP:crossprod(D[[k]])/I[k] = Phi

where Phi[[k]] is specific to the k-th level of Mode C, Phi is common to all K levels of Mode C, and C = matrix(c,K,R) are the Mode C (third mode) weights. This function estimates the weight matrices D[[k]] and B (and C if applicable) using alternating least squares.

References

Helwig, N. E. (2013). The special sign indeterminacy of the direct-fitting Parafac2 model: Some implications, cautions, and recommendations, for Simultaneous Component Analysis. Psychometrika, 78, 725-739. tools:::Rd_expr_doi("10.1007/S11336-013-9331-7")

Timmerman, M. E., & Kiers, H. A. L. (2003). Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika, 68, 105-121. tools:::Rd_expr_doi("10.1007/BF02296656")

Examples

Run this code
##########   sca-p   ##########

# create random data list with SCA-P structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Dmat <- matrix(rnorm(sum(nk)*nf),sum(nk),nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Dmats <- vector("list",mydim[3])
Xmat <- Emat <- vector("list",mydim[3])
dfc <- 0
for(k in 1:mydim[3]){
  dinds <- 1:nk[k] + dfc
  Dmats[[k]] <- Dmat[dinds,]
  dfc <- dfc + nk[k]
  Xmat[[k]] <- tcrossprod(Dmats[[k]],Bmat)
  Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
rm(Dmat)
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat))   # SNR=1
X <- mapply("+",Xmat,Emat)

# fit SCA-P model (no rotation)
scamod <- sca(X,nfac=nf,nstart=1)
scamod

# check solution
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])


##########   sca-pf2   ##########

# create random data list with SCA-PF2 (Parafac2) structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- 10*matrix(rnorm(nf^2),nf,nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
  Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
  Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
  Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat))   # SNR=1
X <- mapply("+",Xmat,Emat)

# fit SCA-PF2 model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-pf2")
scamod

# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])


##########   sca-ind   ##########

# create random data list with SCA-IND structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf)  # SCA-IND is Parafac2 with Gmat=identity
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- 10*matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
  Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
  Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
  Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat))   # SNR=1
X <- mapply("+",Xmat,Emat)

# fit SCA-IND model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-ind")
scamod

# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(1,-1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="C")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])


##########   sca-ecp   ##########

# create random data list with SCA-ECP structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf)
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- matrix(sqrt(nk),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
  Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
  Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
  Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat))   # SNR=1
X <- mapply("+",Xmat,Emat)

# fit SCA-ECP model
scamod <- sca(X,nfac=nf,nstart=1,type="sca-ecp")
scamod

# check solution
scamod$Phi
crossprod(scamod$D[[1]] %*% diag(scamod$C[1,]^-1) ) / nk[1]
crossprod(scamod$D[[5]] %*% diag(scamod$C[5,]^-1) ) / nk[5]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# reorder and resign factors
scamod$B[1:4,]
scamod <- reorder(scamod, 2:1)
scamod$B[1:4,]
scamod <- resign(scamod, mode="B", newsign=c(-1,1))
scamod$B[1:4,]
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])

# rescale factors
colSums(scamod$B^2)
colSums(scamod$C^2)
scamod <- rescale(scamod, mode="B")
colSums(scamod$B^2)
colSums(scamod$C^2)
Xhat <- fitted(scamod)
sse <- sumsq(mapply("-",Xmat,Xhat))
sse/(sum(nk)*mydim[2])


if (FALSE) {

##########   parallel computation   ##########

# create random data list with SCA-IND structure
set.seed(3)
mydim <- c(NA,10,20)
nf <- 2
nk <- rep(c(50,100,200), length.out = mydim[3])
Gmat <- diag(nf)  # SCA-IND is Parafac2 with Gmat=identity
Bmat <- matrix(runif(mydim[2]*nf),mydim[2],nf)
Cmat <- 10*matrix(runif(mydim[3]*nf),mydim[3],nf)
Xmat <- Emat <- Fmat <- vector("list",mydim[3])
for(k in 1:mydim[3]){
  Fmat[[k]] <- svd(matrix(rnorm(nk[k]*nf),nk[k],nf),nv=0)$u
  Xmat[[k]] <- tcrossprod(Fmat[[k]]%*%Gmat%*%diag(Cmat[k,]),Bmat)
  Emat[[k]] <- matrix(rnorm(nk[k]*mydim[2]),nk[k],mydim[2])
}
Emat <- nscale(Emat, 0, ssnew = sumsq(Xmat))   # SNR=1
X <- mapply("+",Xmat,Emat)

# fit SCA-PF2 model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-pf2")})
scamod

# fit SCA-PF2 model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-pf2",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)

# fit SCA-IND model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ind")})
scamod

# fit SCA-IND model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ind",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)

# fit SCA-ECP model (10 random starts -- sequential computation)
set.seed(1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ecp")})
scamod

# fit SCA-ECP model (10 random starts -- parallel computation)
cl <- makeCluster(detectCores())
ce <- clusterEvalQ(cl,library(multiway))
clusterSetRNGStream(cl, 1)
system.time({scamod <- sca(X,nfac=nf,type="sca-ecp",parallel=TRUE,cl=cl)})
scamod
stopCluster(cl)
}

Run the code above in your browser using DataLab