# NOT RUN {
## Define evolutionary wavelet spectrum, structure only on level 2
Spec <- array(0, dim=c(3, 3, 8, 256))
Spec[1, 1, 2, ] <- 10
Spec[2, 2, 2, ] <- c(rep(5, 64), rep(0.6, 64), rep(5, 128))
Spec[3, 3, 2, ] <- c(rep(2, 128), rep(8, 128))
Spec[2, 1, 2, ] <- Spec[1, 2, 2, ] <- punif(1:256, 65, 192)
Spec[3, 1, 2, ] <- Spec[1, 3, 2, ] <- c(rep(-1, 128), rep(5, 128))
Spec[3, 2, 2, ] <- Spec[2, 3, 2, ] <- -0.5
EWS <- as.mvLSW(x = Spec, filter.number = 1, family = "DaubExPhase",
min.eig.val = NA)
## Sample time series and estimate the EWS and coherence.
set.seed(10)
X <- rmvLSW(Spectrum = EWS)
EWS_X <- mvEWS(X, kernel.name = "daniell", kernel.param = 20)
RHO_X <- coherence(EWS_X, partial = FALSE)
## Evaluate asymptotic spectral variance
SpecVar <- varEWS(EWS_X)
## Evaluate 95% approximate confidence interval
CI <- ApxCI(object = EWS_X, var = SpecVar, alpha=0.05)
## Plot mvEWS between channels 1 & 3 at level 2
plot(x = EWS_X, style = 1, info = c(1, 3, 2), Interval = CI)
## Plot coherence between channels 1 & 3 at level 2
plot(x = RHO_X, style = 1, info = c(1, 3, 2), ylab = "Coherence")
## mvEWS panel plot for level 2
plot(x = EWS_X, style = 2, info = 2, Interval = CI)
## Panel plot of coherence for level 2
plot(x = RHO_X, style = 2, info = 2, diag = FALSE, ylab = "Coherence")
## Plot mvEWS for channel pair 1 & 3 at all levels
plot(x = EWS_X, style = 3, info = c(1, 3), Interval = CI)
## Plot coherence for channel pair 1 & 3 at all levels
plot(x = RHO_X, style = 3, info = c(1, 3), ylab = "Coherence")
## Image plot for coherence between channels 1 & 3
plot(x = RHO_X, style = 4, info = c(1, 3), sub = "Coherence")
# }
Run the code above in your browser using DataLab