# \donttest{
set.seed(1)
n <- 32 # number of species
p <- 50 # number of traits
tree <- pbtree(n=n) # phylogenetic tree
R <- crossprod(matrix(runif(p*p), ncol=p)) # a random symmetric matrix (covariance)
# simulate a dataset
Y <- mvSIM(tree, model="BM1", nsim=1, param=list(sigma=R))
fit1 <- mvgls(Y~1, tree=tree, model="BM", method="H&L")
fit2 <- mvgls(Y~1, tree=tree, model="OU", method="H&L")
EIC(fit1); EIC(fit2)
# We can improve accuracy by increasing the number of bootstrap samples
# EIC(fit1, nboot=5000, nbcores=8L)
# EIC(fit2, nboot=5000, nbcores=8L)
# }
Run the code above in your browser using DataLab