# \donttest{
# Simulate some series and fit a few competing dynamic models
set.seed(1)
simdat <- sim_mvgam(n_series = 1,
prop_trend = 0.6,
mu = 1)
plot_mvgam_series(data = simdat$data_train,
newdata = simdat$data_test)
m1 <- mvgam(y ~ 1,
trend_formula = ~ time +
s(season, bs = 'cc', k = 9),
trend_model = AR(p = 1),
noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test,
chains = 2,
silent = 2)
m2 <- mvgam(y ~ time,
trend_model = RW(),
noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test,
chains = 2,
silent = 2)
# Calculate forecast distributions for each model
fc1 <- forecast(m1)
fc2 <- forecast(m2)
# Generate the ensemble forecast
ensemble_fc <- ensemble(fc1, fc2)
# Plot forecasts
plot(fc1)
plot(fc2)
plot(ensemble_fc)
# Score forecasts
score(fc1)
score(fc2)
score(ensemble_fc)
# }
Run the code above in your browser using DataLab