# \donttest{
simdat <- sim_mvgam(seasonality = 'hierarchical')
mod <- mvgam(y ~ series +
s(season, bs = 'cc', k = 6) +
s(season, series, bs = 'fs', k = 4),
data = simdat$data_train,
chains = 2,
silent = 2)
# Use pp_check(mod, type = "xyz") for a list of available plot types
# Default is a density overlay for all observations
pp_check(mod)
# Rootograms particularly useful for count data
pp_check(mod, type = "rootogram")
# Grouping plots by series is useful
pp_check(mod, type = "bars_grouped",
group = "series", ndraws = 50)
pp_check(mod, type = "ecdf_overlay_grouped",
group = "series", ndraws = 50)
pp_check(mod, type = "stat_freqpoly_grouped",
group = "series", ndraws = 50)
# Custom functions accepted
prop_zero <- function(x) mean(x == 0)
pp_check(mod, type = "stat", stat = "prop_zero")
pp_check(mod, type = "stat_grouped",
stat = "prop_zero",
group = "series")
# Some functions accept covariates to set the x-axes
pp_check(mod, x = "season",
type = "ribbon_grouped",
prob = 0.5,
prob_outer = 0.8,
group = "series")
# Many plots can be made without the observed data
pp_check(mod, prefix = "ppd")
# }
Run the code above in your browser using DataLab