MNmargLike: Marginal Likelihood for the Multivariate Normal Model.
Description
This function computes the exact marginal likelihood for Normally distributed data, under the default priors.
Usage
MNmargLike(y, X=NULL, LOG=FALSE)
Value
A scalar representing the marginal likelihood of a (multivariate) Normal model under the default priors for data y. If the design matrix X is provided, the function returns the marginal likelihood of a (multivariate) regression model with Normally distributed errors.
Arguments
y
data matrix.
X
(optional) a design matrix.
LOG
logical; if TRUE, the log-marginal likelihood is returned.
References
Liseo B, Parisi A (2013). Bayesian Inference for the Multivariate Skew-Normal Model: A Population Monte Carlo approach. Comput. Statist. Data Anal., 63, 125-138. ISSN 0167-9473. doi:10.1016/j.csda.2013.02.007.